Comparing Nonparametric Bayesian Tree Priors for Clonal Reconstruction of Tumors
نویسندگان
چکیده
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
منابع مشابه
Prépublications Du Laboratoire Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting. *
In this paper our aim is to provide tools for easily calculating the maxisets of several procedures. Then we apply these results to perform a comparison between several Bayesian estimators in a non parametric setting. We obtain that many Bayesian rules can be described through a general behavior such as being shrinkage rules, limited, and/or elitist rules. This has consequences on their maxiset...
متن کاملNonparametric Bayesian Methods
. Most of this book emphasizes frequentist methods, especially for nonparametric problems. However, there are Bayesian approaches to many nonparametric problems. In this chapter we present some of the most commonly used nonparametric Bayesian methods. These methods place priors on infinite dimensional spaces. The priors are based on certain stochastic processes called Dirichlet processes and Ga...
متن کاملNils Lid Hjort , Chris Holmes
The contribution of this book is to collect most recent research of Bayesian nonparametric techniques together, with main emphasis on the use of Dirichlet process. The popularity of Dirichlet process is because that the Dirichlet prior is nonparametric and conjugate, thus presents many opportunities to flexibly model complex data structure. The book incorporates the Bayesian philiosophy into th...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملA Bayesian Nonparametric Approach to Testing for Dependence Between Random Variables
Nonparametric and nonlinear measures of statistical dependence between pairs of random variables are important tools in modern data analysis. In particular the emergence of large data sets can now support the relaxation of linearity assumptions implicit in traditional association scores such as correlation. Here we describe a Bayesian nonparametric procedure that leads to a tractable, explicit ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2015